2014 National Curriculum

Mathematics - Domain Progression Across Key Stages 1 \& 2

1. Number: Number and Place Value
2. Number: Addition and Subtraction
3. Number: Multiplication and Division
4. Number: Fractions
5. Number: Ratio \& Proportion
6. Measurement
7. Geometry: Properties of Shape
8. Geometry: Position and Direction
9. Statistics
10. Algebra
```
Key to Colours: Green Highlighting: Earlier (or new) Expectations
Yellow Highlighting: Later Expectations
Red Text: Suggested Objectives deemed missing in 2014 Curriculum
```

1: Number \& Place Value	1	2	3	4	5	6
Counting		count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward	count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number	- count in multiples of 6, 7, 9, 25 and 1000 - count backwards through zero to include negative numbers - find 1000 more or less than a given number	count forwards or backwards in ny given number up to 1000000 - interpret negative numbers in context, count forwards and backwards with positive and through zero	use negative numbers in context, and calculate intervals across zero
Place Value (Reading, Writing, Ordering, Comparing and Valuing Numbers)		recognise the place value of each digit in a two-digit number (tens, ones) read and write numbers to at least 100 in numerals and in words writing 3 digit numbers) - compare and order numbers from 0 up to 100; use <, > and = signs			read, write, order and compare numbers to at least 1000000 and numbers to at least 1000000 and determine the value of each digit -	read, write, order and compare numbers up to 10000000 and determine the value of each digi etermine the value of each digit
Identifying, Representing and Estimating Number	dentify and represent number using objects and pictorial number line, and use the language of: equal to, more than, less than (fewer), most, leas		$\begin{aligned} & \text { identify, represent and estimate } \\ & \text { numbers using different } \\ & \text { representations } \end{aligned}$	identify, represent and estimate numbers using different representations		
Rounding		round any umber to the nearest 10	round any number to the nearest 100		round any number up to 1000000 to the nearest 10, 100, 100 10000 and 100000	round any yhole number to a reaured degree of acuracy
Problem Solving		use place value and number facts to solve problems.	solve number problems and practical problems involving these ideas.	solve number and practical above and with increasingly large positive numbers	solve number problems and the above	solve number and practical problems that involve all of the above.
Roman Numerals			read Roman numerals to 12, and recognise the numerals for 50 and 100		read Roman numerala t to $10000(\mathrm{M})$ and reconnise eears Roman uititen in	
Non Statutory Guidance	Pupils practise counting (1, 2, 3...), ordering (for example, first, second, third...), and to indicate a quantity (for example, 3 apples, 2 centimetres), including solving simple concrete problems, until they are fluent. Pupils begin to recognise place value in numbers beyond 20 by reading, writing counting and comparing numbers up to 100 , supported by objects and pictorial representations. They practise counting as reciting numbers and counting as enumerating objects, and counting in twos, fives and tens from different multiples to develop number system (for example, odd and even numbers), including varied and frequent practice through increasingly complex questions They recognise and create repeating patterns with objects and with shapes patterns with objects and with shapes.	Using materials and a range of counting, reading, writing and comparing numbers to at least 100 and solving a fluency. They count in multiples of three to support their later understanding of a third. As they become more confident with introduced to larger numbers to develop further their recognition of patterns them in different ways, including spatial Pupils should partition numbers in different ways (for example, $23=20+3$ and $23=10+13$) to support subtraction. They become fluent and apply their knowledge of numbers to reason with discuss and solve problems that emphasise the value of each digit in two- digit numbers. They begin to understand zero as a placeholder.	Punilis now use mutiples of $2,3,4,5,8,8$, 10,50 and 100 . They use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems, building on work in year 2 (for example, $146=$ $100+40$ and $6,146=130+16)$. Using a variety of representations, including those related to measure, pupils continue to count in ones, tens and hundreds, so that they become numbers to 1000.		Pupils identify the place value in large whole numbers. They continue to use number in context, including measurement. Pupils extend including measurement. Pupils extend number system to the decimal numbers and fractions that they have met so far. They should recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule. They should recognise and describe $3,3 \frac{1}{2}, 4,4 \frac{1}{2} \ldots$), including those involving fractions and decimals, and find the term-to-term rule in words (for example, add $\frac{1}{2}$).	Pupils use the whole number system, including saying, reading and writing numbers accurately.

2014 Maths Curriculum - Domain Progressions - www.senseofnumber.co.uk - Dave Godfrey \& Anthony Reddy 1/1/14

2: Addition \& Subtraction	1	2	3	4	5	6
Problem Solving	solve one-step problems that using concrete objects and pictorial representations, and missing number problems such as $7=[$ siactical contexts and associated terms (put together; between; distance between; more than; less than...)	solve problems with addition and subtraction: - ***using concrete objects and pictorial representations, including quase involving numbers, applying their increasing knowledge of mental and written methods	- Solve problems, including missing facts, place value, and more complex addition and subtraction - solve problems involving addition, subbraction, multiplication and division e.g. If I double a number and add six and the answer is 18 , what was the number?	solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why (including decimals)	solve addition and subtraction multi-step problems in contexts, methods to use and why (including fractions, decimals and percentages) - solve problems involving addition, subtraction, multiplication and division
Facts	represent and use number bonds and related subtraction facts within 20 e.g. $9+7=16,16-7=9,7=16-9$	recall and use addition and subtraction facts to $\mathbf{2 0}$ (previously p) fluirs that make 20 and facts related facts up to 100 e.g. $3+7=10$ so $30+70=100$	Complements to 100	Complements to 1000	Complements of decimals to one whole	Complements to 100 to 2d.p.
Understanding and Using Statements \& Relationships	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - establish that - means subtract (take away is method) - use inverses to establish link between addition and subtraction. - Understand concept of difference	show that addition of two numbers can be done in any order (commutative) e.g. $5+2+1=$ $2+1+5=1+5+2=$ and subtraction of one number from another cannot - recognise and use the inverse relationship between addition \& calculations and solve missing number problems. - Extend understanding of language to include sum and difference - Understand subtraction as taking away or finding the difference.	estimate the answer to a operations to check answers e.g. using rounding	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy (brackets?)	use estimation (including rounding to the nearest 20/50 if appropriate and determine, in the context of a problem, an appropriate degree of accuracy. - use their knowledge of the order of operations to carry out calculations involving the four operations - Introduce brackets and how this affects calculation
Addition and Subtraction - Mental \& Written Methods	- add and subtract one-digit and two- - understand the effect of adding or subtracting zero. - Methods used for addition and subtraction - link to VCP (U+U, UU within 20, Teens $+U$, Teens subtract U)	add and subtract numbers **using concrete objects, pictorial epresentations, and mentally, including: - a two-digit number \& ones - a two-digit number and - two two-digit numbers - adding three one-digit numbers - Refer to VCP for methods. - Finding small difference using number lines	add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods including expanded method of columnar addition and ie. Only use when a mental method or jotting is not more efficient	- add and subtract numbers with up to 4 digits using the formal addition and subtraction decimals) where appropriate - ie. Only use when a mental method or jotting is not more efficient - Continue to add and subtract mentally using jottings if appropriate. - Use understanding of the value of the number to decide when to written method.	add and subtract whole numbers with more than 4 digits, (and decimals with up to 3 dp) including using formal written methods add and subtract numbers mentally with increasingly large numbers	add and subtract any sel of whole numbers and decimals sing appropriate wiriten method - perform mental calculations, including with mixed operations and large numbers - Continue to use written methods to add and subtract whole numbers. - Use witten methods to add and
Non Statutory Guidance	Pupils memorise and reason with number addition and operations. Pupils combine and increase numbers, They discuss and solve problems in tamiliar roastical contexss. inculusing using quantitise. Problems should inclucte the betwen, , more than and less than sot that pupuis develop the concept of taddition and subltracion and are enabled to use these operations fexibly.	Pupils extend their understanding of the language of adadion and sub) include sum and difference. Pupils pracise addition and subtraction to 20 to become increasingly fluent in defiving facts such as sing $3+7=10 ; 10-7=3$ and $7=10-3.3$ oalculate $30+7=100,100-7=30$ and $70=100$ - 30. They check theiric calelulutions, and adding numbers in a different order to check addition (ore exanple $5+2+1=1+$ $5+2=1+2+5$. This estabishes $5+2=1+2+5$). This estabilishes commuativity and ascociativity of adition. Recording addition and subtraction $i n$ columns supports place value and 	Pupils practise solving varied addition and subraction questions. For mental answers could exceed 100 . Pupils use their understanding of place alue and partitioning, and practise using columnar addition and subtraction with digits to become fluent (see Mathematics Appendix 1).	Pupils continue to pracitise both mental mehnocs and columnar adation and to aid fluency (see English Appendix 1) aid fluency (Pupils practise using the formal written methods of columnar addition and o aid fluency (see Mathematics Appendix 1). They practise mental calculations with increasingly large numbers to aid fluency (for example, $12462-2300=10162$).	Pupils practise addition, subtraction, numbers, using the formal written methods of columnar addition and subtraction, short and Iong mutiticication, and shor and long division (see Mathematics Appendix 1). They undertake mental calculations with increasingly large numbers and more complex calculations. Pupils continue to use all the multiplication order to maintain their fluency. Pupils round answers to a specified degree of accuracy, for example, to the nearest 10 , 20,50 etc., but not to a specified number of significant figures. Pupils explore the order of operations using $(2+1) \times 3=9$. Common factors can be related to finding equivalent fractions.

2014 Maths Curriculum - Domain Progressions - www.senseofnumber.co.uk - Dave Godfrey \& Anthony Reddy 1/1/14

3: Multiplication \& Division		2	3	4	5	6
Problem Solving	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. (previously practical grouping and sharing problems) Including operation signs x, \div and $=$ (in readiness for number sentences in Y2)	- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. - Use a variety of language to describe multiplication and division	- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. - Understand scaling a number by a scale factor of 3 as making the number (or measurement) 3 times larger - Link scaling to the understanding of multiplication e.g. $6+6+6=6 \times 3$	- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. - Reproduce shape according to scale factor	- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Facts	- Doubling and halving numbers 1-10 - Counting in twos, fives and tens	- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - Doubling and halving numbers 1-20 - Counting in $3 \mathrm{~s}, 4 \mathrm{~s}$ and 8 s	- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables - doubling facts of multiples of 10 up to double 100 - Counting in $6 \mathrm{~s}, 7 \mathrm{~s}, 9 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}$ - Connect 2,4 and $8 x$ through doubling	- recall multiplication and division facts for multiplication tables up to 12×12 - doubling facts of multiples of 100/1000 - doubling multiples of 10 beyond 100	establish whether a number up to 100 is prime and recall prime numbers up to 19	-
Understanding and Using Statements \& Relationships	- Practical application of grouping and sharing to find simple fractions of objects, numbers and quantities e.g. $1 / 2$ and $1 / 4$ - Make connections between arrays, number patterns, and counting in twos, fives and tens	- show that multiplication of two numbers can be done in any order (commutative) e.g. $3 \times 5=5 \times 3$ and division of one number by another cannot e.g. $15 \div 3 \neq 3 \div 15$ - Introduce the concept of remainders - Begin to relate multiplication and division to fractions e.g. $1 / 2$ is the same as $\div 2$	- Understand remainders in the context of division	- use place value e.g. $600 \div 3=200$, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations e.g. $18 \times 6=2 \times 9 \times 2 \times 3=9 \times 3 \times 2 \times 2=108$ - Interpret remainders, rounding up or down depending on context	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	- identify common factors, common multiples and prime numbers - finding prime factors of 2 digit numbers, and testing for prime numbers beyond 100 - use their knowledge of the order of operations to carry out calculations involving the four operations
Multiplication and Division - Mental \& Written Methods		- calculate mathematical statements for multiplication and division grouping within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs	- write estimate and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	- Estimate and multiply two-digit and three-digit numbers by a one-digit number using a formal written layout including grid method - Short division of TU $\div \mathrm{U}$ and $\mathrm{HTU} \div \mathrm{U}$ - Use mental arithmetic strategies when appropriate, e.g. partitioning, chunking and jottings - Doubling numbers 1-100 as a strategy - multiply and divide whole numbers and those involving decimals by 10 and 100	- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, (including grid) including long multiplication for two-digit numbers - multiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - Express remainders in different ways e.g. $98 \div 4=$ 98/4=24r2=241/2=24.5~25 - Use mental arithmetic strategies when appropriate, e.g. partitioning, chunking and jottings - multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers - Use mental arithmetic strategies when appropriate, e.g. partitioning, chunking and jottings

Key:
Bold: Earlier (or new) Expectations
Yellow Highlighting: Later Expectations
Red Text: Suggested Objectives deemed missing in 2014 Curriculum

4: Fractions		2	3	4	5	6
Recognising, Finding, Naming and Writing Fractions inc. Equivalent Fractions	recognise, find and name a half as one of two equal shape or quantity recognise, find and name a quarter one of four equal parts of an object, shape or quantity. (previously 'use halves and quarters in context) Equivalent $1 / 2=2 / 4$	recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity write simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4} \& \frac{1}{2}$. Order simple fractions on a numberline. Use <>= with simple fractions	recognise, find and write fractions of a discrete set of objects: unit small denominators - recognise and use fractions as numbers: unit fractions and nonare) with small denominators - Add in $1 / 5,1 / 6,2 / 3,3 / 5$. - Decimals - link to money i.e. tenths / hundredths. - Link to division. E.g. 15 divided by 3 is $15 / 3$ - Ongoing <>=	recognise and show, using diagrams, families of common equivalent fractions recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4} 1 / 5$ compare numbers with the same number of decimal places up to two decimal places\# Ongoing <>=	recognise mixed numbers and improper fractions and convert from mathematical statements >1 write mathematical statements >1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}$ $\left.=\frac{6}{5}=1 \frac{1}{5}\right]$ - read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$] - recognise and use thousandths and and decimal equivalents - recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as and as a decimal plus FDP equivalence. - identify, name and write equivalent fractions of a given fraction, tenths and hundredths	use common factors to simplify fractions; use common multiple express fractions in the same denomination associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] equivalents [for example, 0.375] a simple fraction [for example, $\frac{3}{8}$ recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. different contexts. (halves, quarters, thirds, fifths, eighths, tenths, and explore sixths, ninths and elevenths)
Counting \& Ordering	- Counting in halves to 10 . - Add $1 / 2$ to $^{1 / 2}$	- Counting in $1 / 2,1 / 4.1 / 3$ up to 10. Add $1 / 41 / 3$ e.g. $1 / 4+2 / 4$ Also, $1 / 3+1 / 3=12 / 3$	count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 - compare and order unit fractions, and fractions with the same denominators - read, write, order and compare numbers up to one decimal place (money link). - Counting in $1 / 51 / 10,1 / 100$	count up and down in hundredths; recognise dividing han ondiectht by one hundred and dividing tenths by ten. Number line read, write, order and compare numbers with up to two decima places (or 3 in measures) round decimals with one decimal place to the nearest whole number	- read, write, order and compare numbers with up to three decimal places - round decimals with two decimal places to the nearest whole number and to one decimal place - compare and order fractions whose denominators are all multiples of he same number	compare and order fractions, including fractions > 1 Recurring decimals. Rounding recurring decimals to 1, 2 and 3 dp .
 Multiplying Fractions	Sharing and division link		- add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$] - Also under 10 . - Sharing and division link - Complements of 1 to 1 dp (2dp with money)	add and subtract fractions with the same denominator beyond one whole, and convert to a mixed number find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and Sharing and division link Complements of 1 to 1 and 2 dp . E.g. $0.8+0.2=1.0,0.83+017=$ 1.00 etc	add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply and divide whole numbers and decimals numbers by 10 and 100, giving answers up to two decimal places - multiply proper fractions and mixed numbers by whole numbers, diagrams	add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10, 100 and 1000 giving answers up to three decima places multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $\frac{1}{4} \times \frac{1}{2}$ $=\frac{1}{8}$. divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$] multiply one-digit numbers with up to two decimal places by whole numbers use written division methods in cases where the answer has up to two decimal places

2014 Maths Curriculum - Domain Progressions - www.senseofnumber.co.uk - Dave Godfrey \& Anthony Reddy 1/1/14

Find simple fractions of amounts. E.g. $1 / 2$ of $£ 20$,	" solve problems that in of the above. and simple m
- Fractions of simple measures / different 2d shapes e.g. $1 / 4$ of	(cm-m, kg/g, l, ml and money y4).
12 cm . Shade $1 / 3$ of this square 2	-
different ways.	
	$\text { E. } 91 / 2,1 / 3,1 / 4 / \text { of } 11 \mathrm{~kg}$

Fractions:
Problem Solving

Pupils are taught half and quart
as fractions of' discrete and as fractions of discrete and problems using shapes, objects and quantities. For example, they length, quantity, set of objects or shape. Pupils connect halves and quarters to the equal sharing and grouping of sets of objects and to and combining halves and quarters as parts of a whole.

Pupils use fractions as 'fractions of'
discrete and continuous quantities by discrete and continuous quantities by and quantities. They connect unit fractions to equal sharing and grouping to numbers when they can be
calculated, and to measures, fin fractions of lengths, quantities, sets of objects or shapes. They meet as the
first example of a non-unit fraction
Pupils should count in fractions up to 10 starting from any number and using the
and equivalence on the number line (for example, 1,1 (or 1), 1,2). This
reinforces the concept of fraction as numbers and that they can add up to more than one.

solve problems which require degrees of accuracy

Pupils should be taught throughout that percentages, decimals and fractions are hey extend their knowledg proportions. to thousandths and connect to decimals nd measures
Pupils connect equivalent fractions > 1 hat simplify to integers with division and
other fractions >1 to division with remainders, using the number line and her models, and hence move from ese to improper and mixed fractio upils connect multiplication by a (ractions of), and to division, building of work from previous years. This relates caling by simple fractions, including
Pupils practise adding and subbracting
upils practise adding and subbracting variety of increasingly complex
problems. They extend their problems. They extend their
understanding of adding and subtracting ractions to calculations that exceed 1 as mixed number.
Pupils continue to practise counting trwards and backwards in simple actions.
Pupils continue to develop their understanding of fractions as numbers, measures and operators by finding ractions of numbers and quantities. Pupils extend counting from year 4,
using decimals and fractions including bridging zero, for example on a number ne.
Pupils say, read and write decimal actions and related tenths, hundredth and thousandths accurately and are
onfident in checking the asonableness of their answers to oblems.
They mentally add and subtract tenths, ole numbers and tenth They practise adding and subtracting umbers and decimals, decimals with ifferent numbers of decimal places, and compleme.
Pupils should go beyond the measurement and money models of decimals, for example, by solving unils should make conne upils should make connections decimals (for example, 100% represents whole quantity and 1% is $\frac{1}{100}, 50 \%$ is
$\frac{50}{100}, 25 \%$ is $\frac{25}{100}$) and relate this to finding 'fractions of'.

Pupils should practise, use and of fractions with different denominators by identifying equivalent fractions with the same denominator. They should start with fraction is a multiple of the other (for
example, $\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$) and progress to varied and increasingly complex problems.
Pupils should use a variety of imas support their understanding of multiplication with fractions. This follows earlier work about tractions as operators
(fractions of) as numbers and as parts of objects, for example as parts of a rectangle.
Pupils use their understanding of the relationship between unit fractions and division to work backwards by multiplying a quantity that represents a
unit fraction to find the whole quantity (for example, if $\frac{1}{4}$ of a length is 36 cm , then the whole length is $36 \times 4=144 \mathrm{~cm}$). They practise calculations with simple They practise calculations with
fractions and decimal fraction equivalents to aid fluency, including listing equivalent fractions to identify
, wh common denon
Pupils can explore and make
coniectures about converting fraction to a decimal fraction (for example, $3 \div 8=0.375$). For simple fractions with recurring decimal the decimal to three decimal places, or other appropriate approximations depending on the context. Pupils
multiply and divide numbers with up to two decimal places by one-digit and twodigit whole numbers. Pupils multiply decimals by whole numbers, starting
with the simplest cases with the simplest cases, such as 0.4×2
$=0.8$, and in practical contexts, such as measures and money.
Pupils are introduced to the division of decimal numbers by one-digit whole number, initially, in practical contexts recognise division calculations as the inverse of multiplication.
Pupils also develop their skills of predicting and checking the order of magnitude of their answers to decimal calculations. This includes rounding accuracy and checking the reasonableness of their answers

5: Ratio and Proportion	1	2	3	4	5	6
Ratio and Proportion	Simple sequences Make this pattern 2 blue and 1 red. Continue it.	Recognise simple regular patterns and comment on them.	Solve problems involving similar shapes where the scale factor is known. Recognise more complex regular (and simple irregular) patterns e.g. 2 red, 3 green and 4 blue and comment on them. RRGGGBBBB Next one RGGRGRGGRG 3 green 2 red.	Solve problems involving similar shapes where the scale factor is known. Solve simple problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts e.g. I use 31 red and 11 white tubs of paint to make 41 of pink. How many red paint tubs do I need for 12 of pink?	Solve simple problems involving similar shapes where the scale factor is known or can be found. - Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. e.g. In a class there are 30 children. For every 3 boys there are 2 girls. How many boys in the class? Problems e.g. altering a recipe from $2-6$ people e.g. 1 egg 3 spoons of flour -3 eggs, 9 spoons of flour. - solve problems involving the calculation of percentages 10% $25 \% 50 \% 75 \% 40 \%$ etc	solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts - solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - Solve problems involving unequal sharing \& grouping using knowledge of fractions \& multiples.
Non Statutory Guidance					-	Pupils recognise proportionality in contexts when the relations between quantities are in the same ratio (for example, similar shapes and recipes). Pupils link percentages or 360° to calculating angles of pie charts. Pupils should consolidate thei understanding of ratio when comparing solving a variety of problems. They by solving a variety of problems. They might use the notation $a: b$ to record their work. Pupils solve problems involving unequal quantities, for example, 'for every egg you need three spoonfuls of flour', ${ }^{3} \frac{3}{5} \frac{3}{5}$ of the class are boys'. These problems are the foundation for later formal approaches to ratio and proportion

use all four operations to solve problems involving measure ffor example, length, mass, volume, including scaling.
solve problems involving the calculation and conversion of units to thre uscimal places war appropriate

Calculating
mpare, describe and sol
practical problems for:
lengths and heights [for
example, long/short, example, long/short,
longer/shorter, tall/sh double/halff, tall/short, double/haff
mass/weight ffor example heavy/igh,, heavier than, lighter than]
capacity and volume [for
example, full/empty, more example, full/empty, mor half, full, quarter]
time [for example, quicker slower, earlier, later]
mass, temperature capacity (volume), perimeter \& area
measure (using measuring tools e.g. rulers, scales etc) and begin to
 record the following: (using non common standard units):
. lengths and height

- mass/weight
- capacity and volume
time (hours, minutes, seconds)
and units-progressingriate tools - Convert between different units of mixed units eg 1 kg and 200g), compare and find simple compare and find simple compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (//ml)

measure th

 D shapesThe comparison of measures includes simple measures includes simple scaling by integers
(e.g. a given quantity or measure is twice as long or 5 times as high) and this connects to multiplication.
measure for example, kilometre to metre; hour to minute]
measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
find the area of rectilinear shapes by counting squares- relate area to arrays and multiplication.
estimate, compare and calculate different measures, including money in pounds and pence
convert between different units metric measure (for example, and metre; centimetre and millimetre; gram and kilogra and millilitre)

- understand and use approximate equivalences between metric units equivalences between metric uncs inches, pounds and pints
measure and calculate the perimeter of composite rectilinear shapes including using the relations of perime in ind unknown
nes and metres
calculate and compare the area of rectangles (including squares) including using the relations of are including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square centimetres $\left(\mathrm{cm}^{2}\right)$ and
square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes
calculate the area from scale drawings using given drawings using
measurements
estimate volume ffor example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids capacity [for example, using water
recognise and know the value of
different denominations of coins
and notes different denominations of coins
and notes
recognise and use symbols for pounds (\mathcal{I}) and pence (p); combine mounts to make a particular value
find different combinations of coins that equal the same amounts of money
solve simple problems in a practica context involving addition and subtraction of money of the same unit, including giving change
- add and subtract amounts of
money to give change, using both $£$

and p in practical contexts \quad| estimate, compare and calculate |
| :--- |
| different measures, including |
| money in pounds and pence |

$$
\text { division of money in Years } 2 \text { and 3? }
$$

use, read, write and convert between standard units, converting volume and time from a smaller of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
convert between miles and kilometres

- recognise that shapes with the same areas can have differen

 perimeters and vice versarecognise when it is possible to use formules

- calculate the area of parallelograms and triangles
calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic entimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres m^{3}), and extending to other units [for example, mm^{3} and km^{3}].

Measurement Time	sequence events in chronological order using language [for example before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recognise and use language relating to dates, including days of the week, weeks, months and years - tell the time to the hour and half past the hour and draw the hands on a clock face to show these fimes.	- compare and sequence intervals of time - fell and write the time to five minutes, including quarter pastio the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day.		- read, write and convert time between analogue and digital 12and 24 -hour clocks - solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	solve problems involving converting between units of time	
Non Statutory Guidance	The pairs of terms: mass and weight, volume and capacity, are used interchangeably at this stage.	Pupils use standard units of using their knowledge of the accuracy, system. They use the appropriate language and record using standardabbreviations. Comparing measures includes simple multiples such as 'half as high'; 'twice as wide. They become fluent in telling the time onanalogue clocks and recording it.	Pupils continue to measure using the appropriate tools and units, progressin to using a wider range of measures, including comparing and using mixed simple equivalents of mixed units (for example, $5 \mathrm{~m}=500 \mathrm{~cm}$). The comparison of measures includes simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high) and this connects to multiplication.	Pupils build on their understanding of place value and decimal notation to record metric measures, including money. They use multiplication to convert from larger to smaller units.	Pupils use their knowledge of place value and multiplication and division to convert between standard units.	Pupils connect conversion (for example, from kilometres to miles) to a graphical resentalion lin preparation understa graphs
	Pupils move from using and comparing different types of quantities and measures using non-standard units,				Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of erimeter or area to find unknown lengths. Missing measures question algebraically, for example $4+2 b=20$ for a rectangle of sides 2 cm and $b \mathrm{~cm}$ and perimeter of 20 cm .	graphs. They know approximate conversions and are able to tell if an answer is
	including discrete (for example, counting) and continuous (for example, liquid) measurement, to using manageable common standard units. In order to become familiar with			Perimeter can be expressed algebraically as $2(a+b)$ where a and b are the dimensions in the same unit. They relate area to arrays and		and are able to tell if an answer is sensible. Using the number line, pupils use, add and subtract positive and negative integers for measures such as
		Pupils become fluent in counting and recognising coins. They read and say amounts of money confidently and use the symbols $£$ and p accurately, recording pounds and pence separately.	Pupils continue to become fluent in recognising the value of coins, by adding and subtracting amounts, including mixed units, and giving change using and p separately. The decimal recording of money is introduced formally in year 4.		Pupils calculate the area from scale drawings using given measurements	
	Pupils use the language of time, including telling the time throughout the day, first using o'clock and then half past.				Pupils use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days).	They relate the area of rectangles to parallelograms and triangles, for example, by dissection, and calculate their areas, understanding and using the formulae (in words or symbols) to do this.
			Pupils use both analogue and digital 12hour clocks and record their times. In this way they become fluent in and prepared for using digital 24 -hour clocks in year 4 . in year 4.			Pupils could be introduced to compound units for speed, such as miles per hour and apply their knowledge in science o other subjects as appropriate

7: Geometry Shapes		2	3	4	5	6
Recognising, naming, drawing, comparing \& classifying 2D \& 3D Shapes	recognise and name common 2-D and 3-D shapes, including: - 2-D shapes [for example, rectangles (including squares), circles and triangles] - 3-D shapes [for example, cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces - identify 2-D shapes on the surface of 3-D shapes [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D and 3-D shapes and everyday objects.	draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3 -D shapes in different orientations and describe them	compare and classify geometric shapes, including quadrilaterals prev Y7and triangles, based on their properties and sizes	- identify 3-D shapes, including cubes and other cuboids, from 2-D representations - distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	- draw 2-D shapes using giva dimensions and angles - recognise, describe and build simple 3 -D shapes, including making nets - compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons - illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Angles and Symmetry			- recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines. - previously Y5	- identify acute and obtuse angles and compare and order angles up to two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations - previously Y2 - complete a simple symmetric figure with respect to a specific line of symmetry.	- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$ - identify: - angles at a point and one whole turn - prev Y4 - (tota 360°) - angles at apoint on a stright line and $\frac{1}{2}$ a turn (toal 180) - other mutiples of 90° - use the properties of rectangles to deduce related facts and find missing lengths and angles	recognise angles where they meet ar a porticare are on a straight ine, missing angles.
Non Statutory Guidance	Pupils handle common 2-D and 3-D shapes, naming these and related everyday objects fluently. They recognise these shapes in different orientations and sizes, and know that rectangles, triangles, cuboids and pyramids are not always similar to each other	Pupils handle and name a wide variety of common 2-D and 3-D shapes including: quadrilaterals and polygons, and cuboids, prisms and cones, and example, number of sides, number of faces). Pupils identify, compare and sort shapes on the basis of their properties and use vocabulary precisely, such as sides, edges, vertices and faces	Pupils' knowledge of the properties of symmetrical and non-symmetrical polygons and polyhedra. Pupils extend They should be able to describe the properties of 2-D and 3-D shapes using lines and acute and obtuse for angles greater or lesser than a right angle.	Pupils continue to classify shapes usin geometrical properties, extending to classifying different triangles (for example, isosceles, equiliateral, scalene) and quadriliaterals (for example parallelogram, rhombus, trapezium). Pupils compare and order angles in preparation for using a protractor and compare lengths and angles to decide if a polygon is regular or irregular.	Pupils become accurate in drawing lines with a ruler to the nearest millimetre, and measuring with a protractor. They use conventional markings for parallel lines and right angles. Pupils use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and other properties of quadrilaterals, for example using dynamic geometry ICT tools try ICT tools.	Pupils draw shapes and nets accurately using measuring tools and conventional markings and labels for lines and angles Pupils describe the properties of shapes and explain how unknown angles and lengths can be derived from known measurements
		Pupils read and write names for shapes that are appropriate for their word reading and spelling Pupils draw lines and shapes using a straight edge straight edge	Pupils connect decimals and rounding to drawing and measuring straight lines in centimetres, in a variety of contexts.	Pupils draw symmetric patterns using a variety of media to become familiar with different orientations of lines of symmetry; and recognise line symmetry in a variety of diagrams, including where the original shape.	Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.	expressed algebraically for example, $d=2 \times r$, $a=180-(b+c)$

8: Geometry - Position \& Direction		2	3	4	5	6
Describing	- describe position, direction and movement, including whole, half quarter and three-quarter turns.	- use mathematical vocabulary to movement, including movement in a straight line and distinguishing between fotation as a turn and in terms of right angles for quarter half and three-quarter turns (clockwise and anti-clockwise).			identify, describe and (represent) the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	- describe positions on the full coordinate grid (all four quadrants)
Representing		- order and arrange combinations of mathematical objects in patterns and sequences		- plot specified points and draw sides to complete a given polygon.	(identity, describe and) represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	- draw and translate simple shapes on the coordinate plane, and reflect them in the axes
Non Statutory Guidance	Pupils use the language of position, direction and motion, including: left and right, top, middle and botom, on top of, in front of, above, between, around, near, close and tar, up and down, forwards and backwards, inside and outside. Pupils make whole, half, quarter and three-quarter turns in both directions and connect turning lockwise with movement on a clock tace.	Pupils should work with patterns of shapes ind uding toose in different orientations. Pupils use the concept and language of angles to describe 'turn' by applying rotations, including in practical contexts in turns, giving instructions to other pupis to do so, and programming robots using instructions given in right using instructions given in right angles).		Pupils draw a pair of axes in one quadrant, with equal scales and integer labels. They read, write and use pairs of coordinates, for example (2,5), including using coordinate-plotting ICT tools.	Pupils recognise and use reflection and translation in a variety of use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.	Pupils draw and label a pair of axes in all four quadrants with equal scaing. This extends their knowledge of one quadrant to all four quadrants, including the use of negative numbers. Pupils draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates using the properties of shapes. These might be expressed algebraically for example, translating vertex (a, b) to ($a-2, b+3) ;(a, b)$ and $(a+d, b+d)$ being opposite vertices of $(a+d, b+d)$ bing a square of side d.

Compass points - Geography Programme of Study
Geographical skills and fieldwork - KS1
use simple compass directions (North, South, East and West) and locational and directional language [for example, near and far; left and right], to describe the location of features and routes on a map
Geographical skills and fieldwork - KS2
use the eight points of a compass, four and six-figure grid references, symbols and key (including the use of Ordnance Survey maps) to build their knowledge of the United Kingdom and the wider world

9: Statistics	2	3	4	5	6
Representations	- interpret and construct simple pictograms, tally charts, block diagrams and simple tables	- interpret and present data using bar charts, pictograms and tables	- interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.	- complete, read and interpret information in tables, including timetables.	- interpret and construct pie charts and line graphs and use these to solve problems
Problem Solving	- ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity - ask and answer questions about totalling \& comparing categorical data.	solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	. solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	- solve comparison, sum and difference problems using information presented in a line graph	- calculate and interpret the mean as an average.
Non Statutory Guidance	Pupils record, interpret, collate, organise and compare information (for example, using many-to-one correspondence in pictograms with simple ratios $2,5,10$).	Pupils understand and use simple scales (for example, 2, 5, 10 units per cm) in pictograms and bar charts with increasing accuracy. They continue to interpret data presented in many contexts	Pupils understand and use a greater range of scales in their representations. Pupils begin to relate the graphical representation of data to recording change over time.	Pupils connect their work on coordinates and scales to their interpretation of time graphs. They begin to decide which representations of data are most appropriate and why.	Pupils connect their work on angles, fractions and percentages to the interpretation of pie charts. Pupils both encounter and draw graphs relating two variables, arising from their own enquiry and in other subjects. They should connect conversion from kilometres to miles in measurement to its graphical representation. Pupils know when it is appropriate to find the mean of a data set.

10: Algebra		2	3	4		6
Algebra	Counting in constant step sizes with different start numbers, forwards and backwards, with 100 sq and bead string - Missing number sentences, balancing either side of the equals sign Introduce the vocabulary of sequences - Continue PRACTICAL pattern work - One step function machines	- Recording terms of a 'sequence' - Generating +ve and -ve sequences - Balance puzzles - Counting games with different start numbers and step sizes, with support such as 100 square and bead string - Understanding 'inverses' - Describing a sequence, term to term, using/ understanding times tables as 'terms' of a sequence	- Counting in constant steps, related to repeated addition and times tables - Two step function machines - Build linear sequences practically with straws and cubes - Growing linear patterns - Extend balance puzzles wit eg shapes as numbers, more than one variable - Generate simple formulae with eg simple shapes and 'Taktiles' - Concept of algebraic notation eg practical missing number envelopes	- Use of the constant function on a calculator eg inputting x to find y - Generating a negative sequence beyond zero - Plotting sequences eg x tables in +ve quadrant - Line graphs of linear sequences in context - Simple formulae related to shape eg perimeter and area of squares and rectangles and compound shapes - Balance puzzles with symbols	- Extended balance and missing number puzzles - Counting and describing nonlinear sequences eg square and triangular numbers...Fibonacci - Line graphs in 4 quadrants, including finding co-ordinates of a line given the 'rule', position to term - Problem solving with line graphs and sequences	- use simple formulae - generate and describe linear number sequences - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns - enumerate possibilities of combinations of two variables.
Non Statutory Guidance						Pupils should be introduced to the use of symbols and letters to represent variables and unknowns in mathematical situations that they already understand, such as: - missing numbers, lengths, coordinates and angles - formulae in mathematics and science - equivalent expressions (for example, a $+b=b+a)$

2014 Maths Curriculum - Domain Progressions - www.senseofnumber.co.uk - Dave Godfrey \& Anthony Reddy 1/1/14

